J. Fontana
Naval Research Laboratory,
United States
Keywords: plasmonic materials, nanoparticles
Summary:
Plasmonic nanoparticles resonantly couple light to matter, confining electromagnetic fields into spatial regions below the diffraction limit, potentially enabling disruptive optical materials with applications ranging from energy harvesting, to light sources, and in nanomedicines. However, developing approaches to control the nanometer sized elements while simultaneously enabling macroscale throughput has remained challenging and is critical in transitioning these novel properties to materials. Here I will highlight recent work in my group developing device-scale plasmonic nanostructures using directed self-assembly approaches.