Associate Professor of Chemistry Matthew Kanan develops new catalysts and chemical reactions for applications in renewable energy conversion and CO2 utilization. His group at Stanford University has recently developed a novel method to create plastic from carbon dioxide and inedible plant material rather than petroleum products, and pioneered the study of “defect-rich” heterogeneous electro-catalysts for converting carbon dioxide and carbon monoxide to liquid fuel.
Matthew Kanan completed undergraduate study in chemistry at Rice University (B.A. 2000 Summa Cum Laude, Phi Beta Kappa). During doctoral research in organic chemistry at Harvard University (Ph.D. 2005), he developed a novel method for using DNA to discover new chemical reactions. He then moved into inorganic chemistry for his postdoctoral studies as a National Institutes of Health Postdoctoral Research Fellow at the Massachusetts Institute of Technology, where he discovered a water oxidation catalyst that operates in neutral water. He joined the Stanford Chemistry Department faculty in 2009 to continue research into energy-related catalysis and reactions. His research and teaching have already been recognized in selection as one of Chemistry & Engineering News’ first annual Talented 12, the Camille Dreyfus Teacher-Scholar Award, Eli Lilly New Faculty Award, and recognition as a Camille and Henry Dreyfus Environmental Mentor, among other honors.