Two-Dimensional Heterostructures for Logic, Memory and Photonics

D. Jariwala
University of Pennsylvania,
United States

Keywords: transistors, memory, photonic devices

Summary:

The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures. While a tremendous amount of research activity has occurred in assembling disparate 2D materials into “all-2D” van der Waals heterostructures and making outstanding progress on fundamental studies, practical applications of 2D materials will require a broader integration strategy. I will present our ongoing and recent work on integration of 2D materials with 3D electronic materials to realize logic switches and memory devices with novel functionality that can potentially augment the performance and functionality of Silicon technology. First, I will present our recent work on gate-tunable diode1 and tunnel junction devices2 based on integration of 2D chalcogenides with Si and GaN. Following this I will present our recent work on non-volatile memories based on Ferroelectric Field Effect Transistors (FE-FETs) made using a heterostructure of MoS2/AlScN3, 4 and I also will present our work on Ferroelectric Diode devices also based on thin AlScN.5 Next, I will present our work on light-trapping in excitonic systems6 namely, 2D chalcogenides and halide perovskites. I will present the effect of nano-structuring on hybridization between excitons, plasmons and cavity photons.7 I will extend this concept to artificial superlattice of 2D excitonic materials8 as well as natural superlattices in the form of 2D halide perovskites9 and demonstration of hybrid exciton-polariton emission at room temperatures.10 I will end by giving a broad perspective on future opportunities of 2D and other low-dimensional materials in basic science and applied microelectronics technology. References: 1. Miao, J.; Liu, X.; Jo, K.; He, K.; Saxena, R.; Song, B.; Zhang, H.; He, J.; Han, M.-G.; Hu, W.; Jariwala, D. Nano Letters 2020, 20, (4), 2907-2915. 2. Miao, J.; Leblanc, C.; Liu, X.; Song, B.; Zhang, H.; Krylyuk, S.; Davydov, A. V.; Back, T.; Glavin, N.; Jariwala, D. Nature Electronics, 2022. 3. Liu, X.; Wang, D.; Kim, K.-H.; Katti, K.; Zheng, J.; Musavigharavi, P.; Miao, J.; Stach, E. A.; Olsson, R. H.; Jariwala, D. Nano Letters 2021, 21, (9), 3753-3761. 4. Kim, K.-H.; Oh, S.; Fiagbenu, M. M. A.;et al. Jariwala, D. arXiv preprint arXiv:2201.02153 2022. 5. Liu, X.; Zheng, J.; Wang, D.; Musavigharavi, P.; Stach, E. A.; Olsson III, R.; Jariwala, D. Applied Physics Letters 2021, 118, (20), 202901. 6. Anantharaman, S. B.; Jo, K.; Jariwala, D. ACS Nano 2021. 7. Zhang, H.; Abhiraman, B.; Zhang, Q.; Miao, J.; Jo, K.; Roccasecca, S.; Knight, M. W.; Davoyan, A. R.; Jariwala, D. Nature Communications 2020, 11, (1), 3552. 8. Kumar, P.; et al. Jariwala, D. Nature nanotechnology 2021, 10.1038/s41565-021-01023-x 9. Song, B.; et al. Jariwala, D. ACS Materials Letters 2021, 3, (1), 148-159. 10. Anantharaman, et al. Jariwala, D. Nano Letters 2021, 21, (14), 6245-6252.