JUNE 19-21, 2023
WASHINGTON, DC


Materials Innovation for Commercialization of Fusion Energy

Key Speakers

Rebecca Dylla-SpearsRising to the occasion: fusion ignition-enabling materials and manufacturing, and what’s next
Rebecca Dylla-Spears
Deputy Chemistry Lead, Lawrence Livermore National Laboratory

Ahmed DialloARPAE Programs on Materials: Status and Perspectives
Ahmed Diallo
Program Director, ARPA-E

Caroline AndersonThe current status and future of the fusion energy industry
Caroline Anderson
Outreach Manager, Fusion Industry Association

Philip EarpEngineering assurance of materials for fusion – capability and innovation
Philip Earp
Equipment Scientist - Materials Research Facility, UK Atomic Energy Authority

Arnold LumsdaineInnovation Network for Fusion Energy (INFUSE) Public Private Partnerships for the Development of Fusion Energy
Arnold Lumsdaine
Fusion Engineering Group Leader, INFUSE Program Director, Oak Ridge National Laboratory

Jason TrelewiczAdvanced Materials Technologies Enabling High Temperature Superconducting Tokamaks
Jason Trelewicz
Associate Professor, Stony Brook University

Clemente PargaMaterials and Manufacturing Challenges for Fusion Energy Systems
Clemente Parga
Lead Engineer, Zap Energy

 

As commercial fusion continues its march towards viability, there are still key R&D challenges that remain including the need for materials development and innovation in various areas. Materials technology meets the current needs for other types of reactors but will need to be engineered to far more challenging standards for fusion energy in terms of temperatures, pressures, neutron degradation, corrosion, and a host of other material properties.

The fusion power reactor has specific components including the divertor for magnetic fusion, first wall, and blankets for deuterium-tritium fusion designs that still are at low TRL level. Generally, the material properties being sought are improvements in neutron degradation, thermal mechanical loading, corrosion, fracture toughness, erosion protection, and thermal conductivity.

Additionally, the area of high temperature superconducting (HTS) magnets is a key enabling technology for magnetic fusion reactors. New innovations are needed to achieve higher fields and current densities than the well-established options in magnet materials such as NbTi and Nb3Sn materials.

Finally, the pursuit of fusion energy is an international effort by many types of organizations including over 30 private firms, government labs, public-private partnerships, and one of the largest and most ambitious international collaborations in the form of ITER. Recent achievement of ignition at the National Ignition Facility has now engendered great interest in inertial fusion energy as well. The diversity of this effort will be critical to ultimately achieving commercial fusion energy.

This special symposium will focus on the materials research for commercial fusion for all potential reactor designs with specific topics shown below. Additionally, it will highlight the growing private sector involvement as well as private-public partnerships that are playing an increasingly important role in achieving fusion energy commercialization.

 
Back to Top ↑

2023 Symposium Sessions

Tuesday June 20

10:30Materials Innovation for Commercialization of Fusion Energy: Keynotes
1:30Materials Innovation for Commercialization of Fusion Energy

2023 Symposium Program

Tuesday June 20

10:30Materials Innovation for Commercialization of Fusion Energy: KeynotesNational Harbor 7
Session chair: Philip Earp, UK Atomic Energy Authority, UK
10:30ARPAE Programs on Materials: Status and Perspectives
A. Diallo, ARPA-E, US
10:55Rising to the occasion: fusion ignition-enabling materials and manufacturing, and what’s next
R. Dylla Spears, Lawrence Livermore National Laboratory, US
11:20Innovation Network for Fusion Energy (INFUSE) Public Private Partnerships for the Development of Fusion Energy
A. Lumsdaine, Oak Ridge National Laboratory, US
11:45The current status and future of the fusion energy industry
C. Anderson, Fusion Industry Association, US
1:30Materials Innovation for Commercialization of Fusion EnergyNational Harbor 7
Session chair: Arnold Lumsdaine, Oak Ridge National Laboratory, US
1:30Engineering assurance of materials for fusion – capability and innovation
P. Earp, United Kingdom Atomic Energy Authority, UK
1:55Materials and Manufacturing Challenges for Fusion Energy Systems
C. Parga, Zap Energy, US
2:20Advanced Materials Technologies Enabling High Temperature Superconducting Tokamaks
J. Trelewicz, Stony Brook University, US
2:45Break
2:55Utilization of Ultra-High Performance Concrete in Commercial Fusion Energy Facilities
D. LaBrier, M. Mashal, M. Acharya, M. Benson, B. Sosa Aispuro, Idaho State University, US
3:15Electrodeposition of Functionally Graded Brazing Interlayers for Enhanced Joint Strength between Plasma-Facing Materials and Heat Sinks
K. Lee, H. Garich, S. Snyder, M. Inman, Faraday Technology, Inc., US
3:35HTS fusion conductors are not like their schematic cartoon!
D. Abraimov, G. Bradford, J. Bang, L.D. Cooley, F. Kametani, D.C. Larbalestier, H. Mata, Y. Oz, V. Phifer, National High Magnetic Field Laboratory, Florida State University, US
3:55Critical Materials for High Field Fusion Needs and A Potential Alternative HTS
Y. Zhai, Princeton Plasma Physics Laboratory, US
Topics & Application Areas
  • Materials with improved mechanical properties
  • Materials with improved anti-corrosion
  • Neutron degradation materials
  • Computation modeling for materials design and understanding
  • High temperature superconducting magnets
  • Private/public involvement in fusion energy commercialization
  • Other
 

Sponsor & Exhibitor Opportunities
 

To receive announcements and news, please join our mailing list.

Click here to add this event to your calendar.
 
SPONSORS & PARTNERS
Sponsors & Partners
 
SBIR/STTR AGENCY PARTNERS
SBIR/STTR Agency Partners